程序员面试题精选100题(16)-O(logn)求Fibonacci数列[算法]
字号:小|大
2019-09-22 FW.5VV.CN范文网
题目:定义Fibonacci数列如下: / 0 n=0
f(n)= 1 n=1
\ f(n-1)+f(n-2) n=2
输入n,用最快的方法求该数列的第n项。
分析:在很多C语言教科书中讲到递归函数的时候,都会用Fibonacci作为例子。因此很多程序员对这道题的递归解法非常熟悉,看到题目就能写出如下的递归求解的代码。
///////////////////////////////////////////////////////////////////////
// Calculate the nth item of Fibonacci Series recursively
///////////////////////////////////////////////////////////////////////
long long Fibonacci_Solution1(unsigned int n)
{
int result[2] = {0, 1};
if(n < 2)
return result[n];
return Fibonacci_Solution1(n - 1) + Fibonacci_Solution1(n - 2);
}
但是,教科书上反复用这个题目来讲解递归函数,并不能说明递归解法最适合这道题目。我们以求解f(10)作为例子来分析递归求解的过程。要求得f(10),需要求得f(9)和f(8)。同样,要求得f(9),要先求得f(8)和f(7)……我们用树形结构来表示这种依赖关系
f(10)
/ \
f(9) f(8)
/ \ / \
f(8) f(7) f(7) f(6)
/ \ / \
f(7) f(6) f(6) f(5)
我们不难发现在这棵树中有很多结点会重复的,而且重复的结点数会随着n的增大而急剧增加。这意味这计算量会随着n的增大而急剧增大。事实上,用递归方法计算的时间复杂度是以n的指数的方式递增的。大家可以求Fibonacci的第100项试试,感受一下这样递归会慢到什么程度。在我的机器上,连续运行了一个多小时也没有出来结果。
其实改进的方法并不复杂。上述方法之所以慢是因为重复的计算太多,只要避免重复计算就行了。比如我们可以把已经得到的数列中间项保存起来,如果下次需要计算的时候我们先查找一下,如果前面已经计算过了就不用再次计算了。
更简单的办法是从下往上计算,首先根据f(0)和f(1)算出f(2),在根据f(1)和f(2)算出f(3)……依此类推就可以算出第n项了。很容易理解,这种思路的时间复杂度是O(n)。
///////////////////////////////////////////////////////////////////////
// Calculate the nth item of Fibonacci Series iteratively
///////////////////////////////////////////////////////////////////////
long long Fibonacci_Solution2(unsigned n)
{
int result[2] = {0, 1};
if(n < 2)
return result[n];
long long fibNMinusOne = 1;
long long fibNMinusTwo = 0;
long long fibN = 0;
for(unsigned int i = 2; i <= n; ++ i)
{
fibN = fibNMinusOne + fibNMinusTwo;
fibNMinusTwo = fibNMinusOne;
fibNMinusOne = fibN;
}
return fibN;
}
这还不是最快的方法。下面介绍一种时间复杂度是O(logn)的方法。在介绍这种方法之前,先介绍一个数学公式:
{f(n), f(n-1), f(n-1), f(n-2)} ={1, 1, 1,0}n-1
(注:{f(n+1), f(n), f(n), f(n-1)}表示一个矩阵。在矩阵中第一行第一列是f(n+1),第一行第二列是f(n),第二行第一列是f(n),第二行第二列是f(n-1)。)
有了这个公式,要求得f(n),我们只需要求得矩阵{1, 1, 1,0}的n-1次方,因为矩阵{1, 1, 1,0}的n-1次方的结果的第一行第一列就是f(n)。这个数学公式用数学归纳法不难证明。感兴趣的朋友不妨自己证明一下。
现在的问题转换为求矩阵{1, 1, 1, 0}的乘方。如果简单第从0开始循环,n次方将需要n次运算,并不比前面的方法要快。但我们可以考虑乘方的如下性质:
/ an/2*an/2 n为偶数时
an=
\ a(n-1)/2*a(n-1)/2 n为奇数时
要求得n次方,我们先求得n/2次方,再把n/2的结果平方一下。如果把求n次方的问题看成一个大问题,把求n/2看成一个较小的问题。这种把大问题分解成一个或多个小问题的思路我们称之为分治法。这样求n次方就只需要logn次运算了。
实现这种方式时,首先需要定义一个2×2的矩阵,并且定义好矩阵的乘法以及乘方运算。当这些运算定义好了之后,剩下的事情就变得非常简单。完整的实现代码如下所示。
#include <cassert>
///////////////////////////////////////////////////////////////////////
// A 2 by 2 matrix
///////////////////////////////////////////////////////////////////////
struct Matrix2By2
{
Matrix2By2
(
long long m00 = 0,
long long m01 = 0,
long long m10 = 0,
long long m11 = 0
)
:m_00(m00), m_01(m01), m_10(m10), m_11(m11)
{
}
long long m_00;
long long m_01;
long long m_10;
long long m_11;
};
///////////////////////////////////////////////////////////////////////
// Multiply two matrices
// Input: matrix1 - the first matrix
// matrix2 - the second matrix
//Output: the production of two matrices
///////////////////////////////////////////////////////////////////////
Matrix2By2 MatrixMultiply
(
const Matrix2By2& matrix1,
const Matrix2By2& matrix2
)
{
return Matrix2By2(
matrix1.m_00 * matrix2.m_00 + matrix1.m_01 * matrix2.m_10,
matrix1.m_00 * matrix2.m_01 + matrix1.m_01 * matrix2.m_11,
matrix1.m_10 * matrix2.m_00 + matrix1.m_11 * matrix2.m_10,
matrix1.m_10 * matrix2.m_01 + matrix1.m_11 * matrix2.m_11);
}
///////////////////////////////////////////////////////////////////////
// The nth power of matrix
// 1 1
// 1 0
///////////////////////////////////////////////////////////////////////
Matrix2By2 MatrixPower(unsigned int n)
{
assert(n > 0);
Matrix2By2 matrix;
if(n == 1)
{
matrix = Matrix2By2(1, 1, 1, 0);
}
else if(n % 2 == 0)
{
matrix = MatrixPower(n / 2);
matrix = MatrixMultiply(matrix, matrix);
}
else if(n % 2 == 1)
{
matrix = MatrixPower((n - 1) / 2);
matrix = MatrixMultiply(matrix, matrix);
matrix = MatrixMultiply(matrix, Matrix2By2(1, 1, 1, 0));
}
return matrix;
}
///////////////////////////////////////////////////////////////////////
// Calculate the nth item of Fibonacci Series using devide and conquer
///////////////////////////////////////////////////////////////////////
long long Fibonacci_Solution3(unsigned int n)
{
int result[2] = {0, 1};
if(n < 2)
return result[n];
Matrix2By2 PowerNMinus2 = MatrixPower(n - 1);
return PowerNMinus2.m_00;
}
f(n)= 1 n=1
\ f(n-1)+f(n-2) n=2
输入n,用最快的方法求该数列的第n项。
分析:在很多C语言教科书中讲到递归函数的时候,都会用Fibonacci作为例子。因此很多程序员对这道题的递归解法非常熟悉,看到题目就能写出如下的递归求解的代码。
///////////////////////////////////////////////////////////////////////
// Calculate the nth item of Fibonacci Series recursively
///////////////////////////////////////////////////////////////////////
long long Fibonacci_Solution1(unsigned int n)
{
int result[2] = {0, 1};
if(n < 2)
return result[n];
return Fibonacci_Solution1(n - 1) + Fibonacci_Solution1(n - 2);
}
但是,教科书上反复用这个题目来讲解递归函数,并不能说明递归解法最适合这道题目。我们以求解f(10)作为例子来分析递归求解的过程。要求得f(10),需要求得f(9)和f(8)。同样,要求得f(9),要先求得f(8)和f(7)……我们用树形结构来表示这种依赖关系
f(10)
/ \
f(9) f(8)
/ \ / \
f(8) f(7) f(7) f(6)
/ \ / \
f(7) f(6) f(6) f(5)
我们不难发现在这棵树中有很多结点会重复的,而且重复的结点数会随着n的增大而急剧增加。这意味这计算量会随着n的增大而急剧增大。事实上,用递归方法计算的时间复杂度是以n的指数的方式递增的。大家可以求Fibonacci的第100项试试,感受一下这样递归会慢到什么程度。在我的机器上,连续运行了一个多小时也没有出来结果。
其实改进的方法并不复杂。上述方法之所以慢是因为重复的计算太多,只要避免重复计算就行了。比如我们可以把已经得到的数列中间项保存起来,如果下次需要计算的时候我们先查找一下,如果前面已经计算过了就不用再次计算了。
更简单的办法是从下往上计算,首先根据f(0)和f(1)算出f(2),在根据f(1)和f(2)算出f(3)……依此类推就可以算出第n项了。很容易理解,这种思路的时间复杂度是O(n)。
///////////////////////////////////////////////////////////////////////
// Calculate the nth item of Fibonacci Series iteratively
///////////////////////////////////////////////////////////////////////
long long Fibonacci_Solution2(unsigned n)
{
int result[2] = {0, 1};
if(n < 2)
return result[n];
long long fibNMinusOne = 1;
long long fibNMinusTwo = 0;
long long fibN = 0;
for(unsigned int i = 2; i <= n; ++ i)
{
fibN = fibNMinusOne + fibNMinusTwo;
fibNMinusTwo = fibNMinusOne;
fibNMinusOne = fibN;
}
return fibN;
}
这还不是最快的方法。下面介绍一种时间复杂度是O(logn)的方法。在介绍这种方法之前,先介绍一个数学公式:
{f(n), f(n-1), f(n-1), f(n-2)} ={1, 1, 1,0}n-1
(注:{f(n+1), f(n), f(n), f(n-1)}表示一个矩阵。在矩阵中第一行第一列是f(n+1),第一行第二列是f(n),第二行第一列是f(n),第二行第二列是f(n-1)。)
有了这个公式,要求得f(n),我们只需要求得矩阵{1, 1, 1,0}的n-1次方,因为矩阵{1, 1, 1,0}的n-1次方的结果的第一行第一列就是f(n)。这个数学公式用数学归纳法不难证明。感兴趣的朋友不妨自己证明一下。
现在的问题转换为求矩阵{1, 1, 1, 0}的乘方。如果简单第从0开始循环,n次方将需要n次运算,并不比前面的方法要快。但我们可以考虑乘方的如下性质:
/ an/2*an/2 n为偶数时
an=
\ a(n-1)/2*a(n-1)/2 n为奇数时
要求得n次方,我们先求得n/2次方,再把n/2的结果平方一下。如果把求n次方的问题看成一个大问题,把求n/2看成一个较小的问题。这种把大问题分解成一个或多个小问题的思路我们称之为分治法。这样求n次方就只需要logn次运算了。
实现这种方式时,首先需要定义一个2×2的矩阵,并且定义好矩阵的乘法以及乘方运算。当这些运算定义好了之后,剩下的事情就变得非常简单。完整的实现代码如下所示。
#include <cassert>
///////////////////////////////////////////////////////////////////////
// A 2 by 2 matrix
///////////////////////////////////////////////////////////////////////
struct Matrix2By2
{
Matrix2By2
(
long long m00 = 0,
long long m01 = 0,
long long m10 = 0,
long long m11 = 0
)
:m_00(m00), m_01(m01), m_10(m10), m_11(m11)
{
}
long long m_00;
long long m_01;
long long m_10;
long long m_11;
};
///////////////////////////////////////////////////////////////////////
// Multiply two matrices
// Input: matrix1 - the first matrix
// matrix2 - the second matrix
//Output: the production of two matrices
///////////////////////////////////////////////////////////////////////
Matrix2By2 MatrixMultiply
(
const Matrix2By2& matrix1,
const Matrix2By2& matrix2
)
{
return Matrix2By2(
matrix1.m_00 * matrix2.m_00 + matrix1.m_01 * matrix2.m_10,
matrix1.m_00 * matrix2.m_01 + matrix1.m_01 * matrix2.m_11,
matrix1.m_10 * matrix2.m_00 + matrix1.m_11 * matrix2.m_10,
matrix1.m_10 * matrix2.m_01 + matrix1.m_11 * matrix2.m_11);
}
///////////////////////////////////////////////////////////////////////
// The nth power of matrix
// 1 1
// 1 0
///////////////////////////////////////////////////////////////////////
Matrix2By2 MatrixPower(unsigned int n)
{
assert(n > 0);
Matrix2By2 matrix;
if(n == 1)
{
matrix = Matrix2By2(1, 1, 1, 0);
}
else if(n % 2 == 0)
{
matrix = MatrixPower(n / 2);
matrix = MatrixMultiply(matrix, matrix);
}
else if(n % 2 == 1)
{
matrix = MatrixPower((n - 1) / 2);
matrix = MatrixMultiply(matrix, matrix);
matrix = MatrixMultiply(matrix, Matrix2By2(1, 1, 1, 0));
}
return matrix;
}
///////////////////////////////////////////////////////////////////////
// Calculate the nth item of Fibonacci Series using devide and conquer
///////////////////////////////////////////////////////////////////////
long long Fibonacci_Solution3(unsigned int n)
{
int result[2] = {0, 1};
if(n < 2)
return result[n];
Matrix2By2 PowerNMinus2 = MatrixPower(n - 1);
return PowerNMinus2.m_00;
}
相关文章
- 程序员面试题精选100题(03)-第一个只出现一次的字符[算法]
- 程序员面试题精选100题(21)-左旋转字符串[算法]
- 程序员面试题精选100题(24)-栈的push、pop序列[数据结构]
- 程序员面试题精选100题(26)-和为n连续正数序列[算法]
- 程序员面试题精选100题(32)-不能被继承的类[C/C++/C#]
- 程序员面试题精选100题(46)-对称子字符串的最大长度[算法]
- 程序员面试题精选100题(04)-把字符串转换成整数
- 程序员面试题精选100题(10)-排序数组中和为给定值的两个数字[算法]
- 程序员面试题精选100题(16)-O(logn)求Fibonacci数列[算法]
- 程序员面试题精选100题(17)-把字符串转换成整数[算法]
热门推荐
- 程序员面试题精选100题(03)-第一个只出现一次的字符[算法]
- 程序员面试题精选100题(21)-左旋转字符串[算法]
- 程序员面试题精选100题(24)-栈的push、pop序列[数据结构]
- 程序员面试题精选100题(26)-和为n连续正数序列[算法]
- 程序员面试题精选100题(32)-不能被继承的类[C/C++/C#]
- 程序员面试题精选100题(46)-对称子字符串的最大长度[算法]
- 程序员面试题精选100题(04)-把字符串转换成整数
- 程序员面试题精选100题(10)-排序数组中和为给定值的两个数字[算法]
- 程序员面试题精选100题(16)-O(logn)求Fibonacci数列[算法]
- 程序员面试题精选100题(17)-把字符串转换成整数[算法]